skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Guilin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 11, 2026
  2. Abstract Measuring the distance of quasar outflows from the central source (R) is essential for determining their importance for active galactic nucleus feedback. There are two methods to measureR: (1) a direct determination using spatially resolved integral field spectroscopy (IFS) of the outflow in emission and (2) an indirect method that uses the absorption troughs from ionic excited states. The column density ratio between the excited and resonance states yields the outflow number density. Combined with a knowledge of the outflow’s ionization parameter,Rcan be determined. Generally, the IFS method probes anRrange of several kiloparsecs or more, while the absorption method usually yieldsRvalues of less than 1 kpc. There is no inconsistency between the two methods as the determinations come from different objects. Here we report the results of applying both methods to the same quasar outflow, where we derive consistent determinations ofR≈ 5 kpc. This is the first time that the indirect absorptionRdetermination is verified by a direct spatially resolved IFS observation. In addition, the velocities (and energetics) from the IFS and absorption data are found to be consistent. Therefore, these are two manifestations of the same outflow. In this paper we concentrate on the absorptionRdetermination for the outflow seen in quasar 3C 191 using Very Large Telescope/X-shooter observations. We also reanalyze an older absorption determination for the outflow based on Keck/High Resolution Echelle Spectrometer data and find the revised measurement to be consistent with ours. Our companion paper details the IFS analysis of the same object. 
    more » « less
    Free, publicly-accessible full text available April 3, 2026
  3. The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. Abstract We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs. 
    more » « less